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Stable three-dimensional spinning optical solitons supported by competing quadratic
and cubic nonlinearities
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We show that the quadratic interaction of fundamental and second harmonics in a bulk dispersive medium,
combined with self-defocusing cubic nonlinearity, gives rise to completely localized spatiotemporal solitons
~vortex tori! with vorticity s51. There is no threshold necessary for the existence of these solitons. They are
found to be stable if their energy exceeds a certain critical value, so that the stability domain occupies about
10% of the existence region of the solitons. On the contrary to spatial vortex solitons in the same model, the
spatiotemporal ones withs52 are never stable. These results might open the way for experimental observation
of spinning three-dimensional solitons in optical media.
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I. INTRODUCTION

Solitons, i.e., self-trapped light beams or pulses that
supported by a balance between diffraction and/or disper
and nonlinearity, are prominent objects in nonlinear opt
@1#. Optical spatiotemporal solitons~STS! @2#, alias super-
spikes@3# or light bullets@4#, were predicted in many work
@2–16#. They result from the simultaneous balance of d
fraction and group-velocity dispersion~GVD! by self-
focusing. Although they cannot be stable in the uniform se
focusing Kerr (x (3)) medium@8#, stability can be achieved in
saturable@3,6,10#, quadratically nonlinear (x (2)) @2,12–14#,
and graded-index Kerr media@15#. STS can also be found in
the off-resonance two-level systems@17#, in self-induced-
transparency media@18#, as well as in engineered tande
structures incorporating quadratically nonlinear slices@19#.

While a fully localized ‘‘light bullet’’ in three dimensions
~3D! has not yet been found in an experiment, 2D STS i
bulk x (2) medium were observed in Ref.@20#. Those works
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reported the formation of pulses in quadratic media, wh
overcome diffraction in one transverse spatial dimension
GVD in the longitudinal direction. However, such expe
ments were performed by means of the tilted-pulse te
nique, which employs highly elliptical beams; therefore, d
fraction is negligible in the remaining transverse spa
dimension.

Optical vortex solitons constitute another class of se
supporting objects, that have attracted much attention
cause of possible applications to the all-optical processin
information, or to guiding and trapping of atoms. The co
cepts of a multidimensional optical soliton and of an optic
vortex may be combined, giving rise tospinning ~vortex!
solitons. Starting with the seminal works@21#, both delocal-
ized ~‘‘dark’’ ! and localized~‘‘bright’’ ! optical vortices were
investigated in various 2D environments@22–25#. In the 3D
case, the bright spinning solitons take the shape of a to
~‘‘doughnut’’! @26,27#.

For bright vortex solitons, stability is a major concern, a
unlike their zero-spin counterparts, the spinning solitons
apt to be destabilized by azimuthal perturbations. For
models withx (2) nonlinearities, an azimuthal instability wa
discovered by simulations@28# and observed experimentall
@29#. As a result, a soliton with spin 1 splits into three or tw
fragments in the form of separating zero-spin solitons. N
merical simulations of the 3D spinning STS in thex (2)

model also demonstrate splitting into moving zero-spin s
tons @27#.

Nevertheless, thex (2) nonlinearity acting in combination
with the self-defocusingKerr @x2

(3) , where we use the sub
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D. MIHALACHE et al. PHYSICAL REVIEW E 66, 016613 ~2002!
script ‘‘minus’’ to stress the self-repulsion# nonlinearity gives
rise to stable spinning~ring-shaped! 2D solitons with spin
s51 and 2 @23#. Models of this type for spatia
@(211)-dimensional# solitons are well known@30,31#. The
stability of the spinning solitons in thex (2):x2

(3) model may
be realized as a result of competition between the s
focusing and self-defocusing nonlinearities. This understa
ing is further supported by the fact that stable spinning s
tons of the same type have also been found in another op
model displaying both focusing and defocusing nonlinea
ties, viz., the one based on the cubic-quintic~CQ! nonlinear
Schrödinger equation. In addition to optics, the same eq
tions have been investigated in the contexts of Bose-Eins
condensates~BECs! @32# and Langmuir waves in plasma
@33# ~however, in the former case, the quintic nonlinear
arises from three-body interactions, which also give rise
losses by recombination of BEC constituents into differ
species, thus making the quintic nonlinear coefficient a co
plex one!.

In the first direct simulations of 2D solitons with spin 1
the CQ model, reported in the pioneer work@34#, it was
found that they are robust, provided that their energy is
too small@34#. Later analysis, based on the computation
linear-stability eigenvalues, demonstrated that some of
spinning 2D solitons considered in Ref.@34# are subject to a
weak azimuthal instability. Nonetheless, in another part
their existence region, where they have a very large ene
the solitons with spins51 ands52 were confirmed to be
stable in the 2D CQ model@35# ~see also Ref.@36# for the
stability investigation of the solitons with spins51). Stable
2D vortex solitons in the CQ model can self-trap fro
Gaussian inputs with an embedded vorticity@37#. Notice that
all the solitons withs>3 have been demonstrated to be u
stable in the CQ model@35#.

A challenging issue is the search for physically relev
models in whichstable3D spinning solitons exist. In fact
the only previously known model that could support sta
3D vortex solitons was the Skyrme model~see reviews@38#!.
Very recently, we have found stable 3D spinning STS in
CQ model, which could again be construed as a result of
competition between self-focusing and self-defocusing@39#.
Direct simulations of the 3D CQ model@40# demonstrated
that 3D spinning solitons with moderate energies were
stable against azimuthal perturbations, while the ones w
very large energies, i.e., broad ‘‘doughnuts’’ with a sm
hole in the center, were robust under propagation. Howe
a consistent stability analysis makes it necessary to com
eigenvalues of small perturbations. By calculating the ins
bility growth rates, in Ref.@39# it was rigorously shown tha
sufficiently broad STS with spins51 are stable, the stability
region occupying'20% of their existence region, while a
the STS withs>2 are unstable.

The aim of this paper is to show that the existence
stable spinning 3D solitons is a more generic fact, which
not limited to the CQ model considered in Ref.@39#. To this
end, we will analyze the existence and stability of spinn
STS solitons in the 3D version of the above-mention
x (2):x2

(3) model with the self-defocusing cubic term. In Se
II, the model is formulated, and general results concern
01661
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the existence of 3D spinning STS in it, with different valu
of the spin, are displayed. Fundamental results for the sta
ity of the spinning solitons, based on eigenvalues found fr
equations linearized around the soliton solutions, are p
sented in Sec. III. Direct simulations of the soliton’s stabil
within the framework of the full nonlinear equations are d
played in Sec. IV, and Sec. V concludes the work.

II. THE MODEL AND SPINNING SOLITONS

The scaled equations describing the reversible genera
of the second harmonic~SH! from a single fundamental
frequency~FF! componentu, in the presence of the self
defocusing cubic nonlinearity, dispersion, and diffraction
the (311)-dimensional geometry, are well know
@12,13,23,30,31#:

i
]u

]Z
1

1

2 S ]2u

]X2
1

]2u

]Y2
1

]2u

]T2D 1u* v2~ uuu212uvu2!u50,

i
]v
]Z

1
1

4 S ]2v

]X2
1

]2v

]Y2
1s

]2v

]T2D 2bv1u2

22~2uuu21uvu2!v50. ~1!

Here,T, X, Y, andZ are the normalized reduced time, tran
verse spatial coordinates, and propagation distance,u andv
are envelopes of the FF and SH fields, andb is a phase
mismatch between the FF and SH waves. The variables u
in Eqs.~1! are related to their counterparts~to be denoted by
tildes! in Ref. @23# as follows: u[2ũ, v[w̃, A2(x,y)
[( x̃,ỹ).

Equations~1! assume different GVD coefficients at th
two harmonics,s being their ratio@12#, but neglect the
Poynting-vector walkoff between the harmonics, and
sumes that the temporal group-velocity mismatch betw
them@14,41,42# has been compensated. On the other hand
the cases51 the model possesses an additional spatiote
poral spherical symmetry@12,13#. Below, we will display
results for the cases51, assuming that the group-velocit
mismatch may be neglected in this case too.

We look for stationary solutions to Eqs.~1! in the
form u5U(r ,T)exp(ikZ1isu), v5V(r ,T)exp@2(ikZ1isu)#,
whereu is the polar angle in the plane (x,y), k is a wave
number shift, and the integers is the above-mentioned spin
The amplitudesU and V may be taken real, obeying th
equations

1

2 S ]2U

]r 2
1

1

r

]U

]r
2

s2

r 2
U1

]2U

]T2 D 2kU1UV

2~U212V2!U50,

1

4 S ]2V

]r 2
1

1

r

]V

]r
2

4s2

r 2
V1s

]2V

]T2D 2~2k1b!V1U2

22~2U21V2!V50. ~2!
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STABLE THREE-DIMENSIONAL SPINNING OPTICAL . . . PHYSICAL REVIEW E 66, 016613 ~2002!
Dynamical equations~1! conserve the total energy

E5E E E ~ uuu21uvu2!dXdYdT[Eu1Ev , ~3!

Hamiltonian

H5
1

2E E E H F ~ uuXu21uuYu21uuTu2!1
1

4
~ uvXu21uvYu2

1suvTu2!G1@buvu22~u* 2v1u2v* !1~ uuu414uuu2uvu2

1uvu4!#J dXdYdT, ~4!

momentum~equal to zero for the solutions considered!, and
longitudinal component of the orbital angular momentumL
@43#. The following relations betweenL, H, andE for a sta-
tionary spinning STS follow from Eqs.~2!: L5sE, and

H52
1

3
kE1

1

3
bEv2

1

3E E E ~ uuu414uuu2uvu2

1uvu4!dXdYdT. ~5!

We have numerically found one-parameter families of s
tionary 3D spinning solitons that have the shape of a dou
nut with a hole~supported by a phase dislocation! in the
center. To this end, we solved numerically the coupled s
tem of equations~2! using a standard band-matrix algorith
@44# to deal with the corresponding two-point boundar
value problem. We will display results fors51; however,
we have also found that the STS exist for alls>0, cf. Ref.
@13#, where nonspinning STS were studied in detail fors
Þ1.

In Fig. 1 we summarize the output of extensive numeri
calculations aimed to detect the domains of existence
stability of spinning STS. The continuous lines border t
existence domain, and the dashed line constitutes a boun
between stable and unstable regions in the parameter p
(b,k). The way the stability boundary has been found w
be explained in detail in the following sections.

Shapes of three representative doughnut-likestableSTS
are plotted in Fig. 2 for a fixed value of the net energy@see

FIG. 1. Domains of the existence and stability of spinning S
with spins51. The upper continuous curve is the existence bor
corresponding to infinitely broad~in fact, dark! solitons.
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Eq. ~3!#, E512 000. We see that, with the increase of t
mismatchb, the energy of the FF component of the spinni
soliton increases, similar to the case of nonspinning solit
in purex (2) media@42,45–47#.

Below, we present systematic results which characte
spinning STS in the case of the zero phase matching,b50.
In Fig. 3 we plot the curvesk5k(E) andH5H(E) for both
nonspinning and spinning STS in this case. The full a
dashed lines in Fig. 3 correspond to stable and unsta
branches according to results presented below. Thes50
solitons are stable according to the known Vakhito
Kolokolov criterion, which states that the fundamentals
50) soliton branch undergoes a stability change at the p
dE/dk50 @48#.

A feature shared by the nonspinning and spinning s
tons, as it is evident in Fig. 3, is the absence of any fin
threshold for their existence. This is a drastic difference fr
the recently studied STS in the CQ model, where we
defined thresholds were found for zero and nonzero value
the spin@26,39#.

III. STABILITY EIGENVALUES OF THE SPINNING
SOLITONS

Complete understanding of the stability of solitons is p
vided by direct simulations of the evolution equations~see
below! together with the analysis of Eqs.~1! linearized about
the stationary spinning-soliton solution. In this section,
focus on the latter approach, seeking for perturbation eig
modes in a general form

r,

FIG. 2. Typical shapes of stable STS withs51 for E512 000:
~a! b520.1, ~b! b50, and ~c! b50.2. The labels FF and SH
pertain to the fundamental frequency and second-harmonic com
nents of the soliton.

FIG. 3. The propagation constantk ~a! and HamiltonianH ~b!
of the three-dimensional solitons, with different values of spin,
their energyE, in the case of zero phase mismatch,b50.
3-3
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D. MIHALACHE et al. PHYSICAL REVIEW E 66, 016613 ~2002!
u~Z,r ,T,u!2U~r ,T!exp@ i ~su1kZ!#

5 f ~r ,T!exp$lnZ1 i @~s1n!u1kZ#%

1g* ~r ,T!exp$ln* Z1 i @~s2n!u1kZ#%, ~6!

v~Z,r ,T,u!2V~r ,T!exp@2i ~su1kZ!#

5p~r ,T!exp$lnZ1 i @~2s1n!u12kZ#%

1q* ~r ,T!exp$ln* Z1 i @~2s2n!u12kZ#%, ~7!

where n.0 is an arbitrary integer azimuthal index of th
perturbation,ln is the~complex! eigenvalue that needs to b
found, and functionsf, g andp, q obey equations

ilnf 1
1

2 F ]2f

]T2
1

]2f

]r 2
1r 21

] f

]r
2~s1n!2r 22f G2k f

22~U21V2! f 2~U22V!g2~2UV2U !p22UVq

50, ~8!

2 ilng1
1

2 F ]2g

]T2
1

]2g

]r 2
1r 21

]g

]r
2~s2n!2r 22gG2kg

22~U21V2!g2~U22V! f 2~2UV2U !q

22UVp50, ~9!

ilnp1
1

4 Fs
]2p

]T2
1

]2p

]r 2
1r 21

]p

]r
2~2s1n!2r 22pG

2~2k1b!p24~U21V2!p22V2q22~2UV2U ! f

24UVg50, ~10!

2 ilnq1
1

4 Fs
]2q

]T2
1

]2q

]r 2
1r 21

]q

]r
2~2s2n!2r 22qG

2~2k1b!q24~U21V2!q22V2p22~2UV2U !g

24UV f50. ~11!

Physical solutions must decay exponentially atr→`. At r
→0, f andg must vanish asr us6nu, whereasp andq vanish as
r u2s6nu.

To solve the above equations and find the eigenvalues
used a known numerical procedure@28,49#, which produces
results presented in Fig. 4. The most persistent unst
eigenmode is found for value of the azimuthal indexn52,
for boths51 ands52. As is seen in Fig. 4, the instability o
the soliton withs51, accounted for by Rel2, disappears
with the increase ofk at a stability-change point,kst

'0.045 72, and the stability region extends up tok5koffset
(3D)

'0.051, corresponding to the upper continuous line in F
1, i.e., infinitely broad solitons~which implies that the vortex
of the dark-soliton type@21#, that may be regarded as a
infinitely broad spinning soliton, is stable too!. The relative
width of the stability region is (koffset

(3D)2kst)/koffset
(3D)'0.1.

However,no stability region has been found for the 3D so
01661
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tons withs52, as well as in the 3D model of the CQ typ
and in contrast to the 2D vortex solitons in both thex (2):x2

(3)

model with the competing quadratic and cubic nonlinearit
~the same as considered here! @23#, and 2D CQ model@35#.

In the case when the spinning solitons are unstable, t
instability is oscillatory; the corresponding frequency, Iml
@see Figs. 4~c! and 4~d!# is found to be, generally, on th
same order of magnitude as Rel at the maximum-instability
point. In the stable region,k>kst, all the eigenvalues are
purely imaginary. Oscillatory instabilities of solitons, chara
terized by complex eigenvalues of the corresponding n
self-adjoint linear operator, are typical to other conservat
models of nonlinear optics@50–52#.

IV. DIRECT SIMULATIONS

The above results were checked against direct simulat
of Eqs. ~1!, carried out by means of the Crank-Nicholso
scheme. The corresponding system of nonlinear partial
ferential equations was solved by means of the Picard it
tion method @53#, and the resulting linear system wa
handled by means of the Gauss-Seidel iterative scheme.
good convergence we needed, typically, five Picard iterati
and fifteen Gauss-Seidel iterations. We employed a tra
verse grid having 1213121391 points, and a typical longi-

FIG. 4. The growth rate of perturbations, Rel, corresponding to
different values of the azimuthal indexn ~indicated by labels nea
the curves! vs the soliton’s wave numberk: ~a! s51; ~b! s52. The
imaginary part of the stability eigenvalue, Iml, corresponding to
different values of the azimuthal indexn ~indicated by labels nea
the curves! vs the soliton’s wave numberk: ~c! s51; ~d! s52.
Here and in the following plots,b50. We stress that, in the cas
s51, the instability growth rate vanishes at the pointk5kst , see
the text, while in the cases52 the growth rate corresponding t
n52 remains positive up to the border of the existence region
the solitons. This border is marked in all the panels by verti
arrows.
3-4
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STABLE THREE-DIMENSIONAL SPINNING OPTICAL . . . PHYSICAL REVIEW E 66, 016613 ~2002!
tudinal step size wasDZ50.1. To avoid distortion of the
instability development under the action of the periodic
imposed by the Cartesian computational mesh, we added
tial perturbations that were mimicking random fluctuations
a real system~cf. Ref. @10#!.

To illustrate the evolution of a stable 3D ‘‘bullet’’ gene
ated by an input in the form of a completely localized Gau
ian pulse with the energyE055986@see Eq.~3!#, into which
a vortex withs51 was embedded, in Fig. 5 we show th
energies of its two components vsZ. Robustness of the spin
ning STS is attested to by the fact that it can be genera
from a Gaussian with a nested vortex, whose shape is
from the soliton’s exact form. We see from Fig. 5 that the
is a strong reshaping of the input Gaussian, which leads
redistribution of the energy between the two compone
some energy loss occurs, caused by emission of radiatio
the course of the formation of the stable STS. Figure 6 sh
gray-scale contour plots of the intensity and phase distr
tion in the FF component, in both the input Gaussian wit
nested vortex, and in the emerging spinning STS with
vorticity s51 at Z5100, corresponding to the same ca

FIG. 5. Evolution of the energy componentsEu and Ev of the
soliton with s51, as generated by an input configuration in t
form of a Gaussian with a nested vortex. Here, the input total
ergy isE55986.

FIG. 6. The formation of the soliton with spins51 in the same
case as in Fig. 5, shown in terms of the cross section of the field
T50: ~a! the intensity distribution in the initial Gaussian with
nested vortex;~b! its phase field;~c! the intensity distribution of the
spinning soliton atZ5100; ~d! the phase field atZ5100.
01661
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that was presented in Fig. 5. No further essential evolution
the soliton was observed in this case atZ.100.

Typical instabilities of the spinning STS with the spins
51 ~in the case when it is unstable! ands52 are illustrated
by Figs. 7–10. The azimuthal instability breaks the unsta
spinning solitons into zero-spin ones, which fly out tange
tially relative to the circular crest of the original solito
@similar to what is known about the instability-induce
breakup of the (211)D spatial vortex solitons@28##. Thus,
the initial internal angular momentum~spin! of the
doughnut-shaped spinning soliton is converted into the
bital momentum of the emerging nonspinning fragments.

Analyzing a large body of numerical results, we have co
cluded that the number of the emerging fragments is roug
equal to twice the original spins. The dependence of th
number of the fragments on the other parameters is fa
weak.

It is noteworthy that, in all the cases displayed in Fig
7–10~and in many more cases not shown here!, the number
of the instability-generated fragments is exactly equal to
azimuthal index of the perturbation mode having the larg
growth rate. Thus, the full nonlinear evolution of the u
stable spinning solitons is in perfect agreement with the
bility analysis based on the linearized equations, which w
presented in the preceeding section.

V. CONCLUSION

In this paper, we have shown that stable bright spatiote
poral spinning solitons~vortex tori!, which were recently
found in the cubic-quintic model of a dispersive optical m
dium with competing self-focusing and defocusing nonl
earities@39#, are also possible in a model based on the co
petition between the quadratic and self-defocusing cu
nonlinearities. The solitons are stable, provided that they
broad enough~so that the soliton’s energy exceeds a cert

-

at

FIG. 7. Isosurface plots illustrating the fragmentation of thes
51 soliton with k50.01 into zero-spin ones as a result of th
azimuthal instability:~a! Z50; ~b! Z51000.

FIG. 8. The same as in Fig. 7 in the casek50.032:~a! Z50; ~b!
Z51140.
3-5



le

ha

th
in

ta

ha
p
ry

y
om
n

th
t

a
m
,

ic
od
t
c
in

the
r-

ly
cts,
pin-
rt,

er-
pin
ith
ut
ly
ess
la-

-

bed
re

l-
haft
-
o-
a-
o.
r-

D. MIHALACHE et al. PHYSICAL REVIEW E 66, 016613 ~2002!
critical value, or, in other words, the size of the internal ho
is essentially smaller than the overall size of the soliton!.

In fact, the model with thex (2):x2
(3) ~quadratic-cubic!

nonlinearity may be realized easier in real optical media t
the x1

(3) :x2
(5) ~self-focusing-cubic–self-defocusing-quintic!

one. Possibilities for the experimental implementation of
former model~chiefly, based on the quasi-phase-match
technique! were discussed in Refs.@23,54,55#. Note that such
optical media may be used equally well for the experimen
generation of both the spatial (211)-dimensional solitons
~vortex cylinders! considered in Ref.@23# and the 3D spa-
tiotemporal spinning solitons~vortex tori! found in the
present work.

It is relevant to stress that the amplitude of a beam t
can give rise to a stable spinning soliton should not be s
cifically large: as it is evident from Fig. 2, the necessa
power is essentially the same as that which is necessar
the existence of a nonspinning soliton. The difference fr
the latter case is that the beam generating a stable spin
soliton must be broad~its cross section and temporal wid
should be large!, i.e., its peculiarity is not a large power bu
rather large total energy.

Similar to the cubic-quintic model, only spatiotempor
solitons with spins51 may be stable in the present syste
in contrast with the spatial (211)-dimensional solitons
which may be stable in the casess51 ands52, in models
of both types~on the other hand, a difference from the cub
quintic case is that the existence of STS in the present m
is not limited by any energy threshold!. These results sugges
a conclusion that stable vortex solitons are generic obje
provided that the medium’s nonlinearity contains compet

FIG. 9. The same as in Figs. 7 and 8 in the case of thes52
initial soliton with k50.015:~a! Z50; ~b! Z5900.
J
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elements and the soliton’s energy is large enough; in all
known models lacking the nonlinear competition, bright vo
tex solitons are subject to a strong azimuthal instability.

Note added in proof.One may assume that, very broad
speaking, spinning solitons are not absolutely stable obje
but rather metastable ones. Indeed, the energy of the s
ning soliton is larger than that of its zero-spin counterpa
hence it is possible to imagine that a very strong initial p
turbation would provoke its rearrangement into a zero-s
soliton, the angular momentum being carried away w
emitted radiation. In terms of this consideration, it turns o
that thes51 ands50 solitons are separated by extreme
high potential barriers, which makes the assumed proc
practically impossible. Indeed, additional numerical simu
tions show that solitons with spins51, perturbed at input by
a very strong random noise~the amplitude of the perturba
tion is up to 30% of the soliton’s amplitude!, resist this dam-
age and, eventually, completely retrieve the unpertur
shape~figures illustrating results of these simulations a
available at http://lanl.arXiv.org/ps/nlin/0206007!.
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